

OPTIMIZING ELECTRIC MOTOR CONTROLS WITH DYNAMIC MOTOR DRIVE

TULA TECHNOLOGY

Tula - Driving Towards the Future

Challenges of Climate Change

Greenhouse gas emission causes climate change. Automobiles are a major contributor

Conventional Solutions Rely on Rare Materials

Heavy use of scarce materials can limit the implementation of permanent magnet EVs

Dynamic Motor Drive (DMD) – The Concept

Dynamic Motor Drive (DMD) – The Concept

Dynamic Motor Drive (DMD) – The Concept

DMD Motor Architecture Selection

DMD is most effective for Synchronous Reluctance Motors (SynRM)

© 2021 Tula Technology, Inc. All rights reserved.

Optimizing these losses improves reluctance motor efficiency significantly

Torque Production of Synchronous Reluctance Motor

ILA

Torque is proportional to current² for SynRM's at moderate loads

Optimization of Loss Tradeoffs

	Linear to Current	Quadratic to Current
Conduction Loss	$V_{ce0}\left(\frac{1}{2\pi} + \frac{mcos\theta}{8}\right)I$	$R_{ce}\left(\frac{1}{8} + \frac{mcos\theta}{3\pi}\right)I^2$
Switching Loss	$\frac{f_{sw}V_{dc}}{\pi I_{ref}V_{ref}} \left(E_{on} + E_{off} + E_{rr}\right)I$	-
Copper Loss	-	RI^2 DMD
Hysteresis Loss	$k_h f B^{1.6} V$ DMD	
Eddy Current Loss	-	$k_w \delta^2 f^2 B^2 V$

Motors using reluctance torque are well suited for DMD

© 2021 Tula Technology, Inc. All rights reserved.

DMD Motor Architecture Selection

DMD is more effective for motors actively making use of reluctance torque

Tula Designed SynRM

A proof-of-concept motor was designed and built by Tula to prove out DMD Strategy

Synchronous Reluctance Motor (SynRM) Design

As a proof of concept, Tula has designed a 15kW SynRM using a multi-objective genetic algorithm (GA), optimizing torque, torque ripple, and harmonic distortions

Control Optimation for DMD

Conventional control methods and hardware

Tula's DMD algorithms were developed to allow implementation with conventional control algorithms

Time-optimized control methods optimize efficiency during transitions between high and low torque

Torque Control Law

- Max torque per Ampere (MTPA) curve generated from Finite Element Analysis has around 1° error from test results
- This inaccuracy is corrected by compensating the iron loss model

Current Control Achieving Desired Response Speed

Excellent current tracking realized by deadbeat control

Vehicle Sensitivity and Human Perception

Torque modulation frequency selected has less human sensitivity

Vibration Mitigation Strategies

Switching modulation waveform phase between 0 and 180 degrees every 3 cycles

Changing torque modulation frequency randomly between 4 Hz and 40 Hz

Phase shifting and frequency changing are effective to lower and spread the vibration frequency

Test Results of Efficiency Improvement of 15kW SynRM

- Up to 7% efficiency improvement is verified at low loads with initial controller
- Advanced controller is under developing to narrow the gap to ideal values

Simulation Results on Efficiency Improvement

© 2021 Tula Technology, Inc. All rights reserved.

Simulation Results on Efficiency Improvement

Substantial energy usage reduction of 2.5-5% for a 150kW application

Future Plan on Full-Sized Traction Motor Test

Our 150kW vehicle traction-motor development dyno is now operable and collecting initial data

We have implemented control on two demonstration Bolts

DMD Enables Better Efficiency

- Dynamic Motor Drive is a control strategy optimizing motor and inverter system efficiency
- It requires no additional hardware and is easy to implement in software with IP licensed from Tula
- Significant efficiency improvements on relevant drive cycles are achieved, helping to reduce or eliminate rare earth material dependence and downsize the battery capacity required
- The strategy makes use of a very fast response speed of the proposed current controller to realize optimal efficiency at both steady and transient states
- Vibration issues can be mitigated by using industry-proven techniques developed with Tula's Dynamic Skip Fire technology