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eDCCO/Hybrid++ Introduction

* All-at-once cylinder deactivation systems have
lower cost and are attractive to customers

* DCCO extends coasting by eliminating retarding
pumping torque encountered in typical DFCO,
and prevents catalyst oxygenation

* Opportunity for electric driving with fully
deactivated engine when torque demand is low
* Electric driving doubles fuel cutoff time in WLTC

* Torque bump on exiting DCCO managed
through use of MGU torque; more efficient
than other methods
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DCCO Advantages over DFCO

» Catalyst oxygen management: avoids air
pumping through catalyst during
decelerations, eliminates need for 02
purge with rich combustion

» Increased fuel off time: no entry delays,
increased coasting time
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Synergy of DCCO with Mild Hybrid

» Increased regeneration by reducing
pumping losses

» High value torque assist in using the
energy through electric driving
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Synergy of DCCO with Mild Hybrid —~ 160

» Increased regeneration by reducing
pumping losses
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Additional Benefits

Engine stop in DCCO
* Avoids return to idle and associated fueling
* Increases inertia energy recuperation by eliminating pumping

Engine start in DCCO
* Improved first combustion after spin-up

* Eliminates pumping losses during cranking = reduced electrical energy required with better NVH
* Eliminates air pumped into catalyst

Reduced toxic emissions due to better catalyst management

Reduced cold-start emissions due to better combustion after engine spin-up in deac
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eDCCO Highly-Effective Use of Electrical Energy for Torque Assist

 Effectiveness of MGU torque
assist quantified as fuel saved
per unit electrical energy spent

* Most-effective torque assist
with engine firing is near the
maximum electrical system
efficiency

e DCCO with electric driving is a
higher-value use of battery
energy than firing
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eDCCO Highly-Effective Use of Electrical Energy

Below 95Nm flywheel torque
request, ZEV driving has better TA
effectiveness than firing the engine,
especially at the lowest loads

To limit the use of TA, a threshold of
effectiveness is chosen, here 73
mg/kJ produces battery state of
charge at the end of a drive cycle
matching that at the beginning

For 14+MH operation above 95Nm,
TA improves engine efficiency only
at the highest flywheel torque
requests. A threshold of 60 mg/kJ
maintains SoC

The lower threshold indicates less
opportunitty to use battery energy in
a highly-effective way
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ZEV operation to replace low load ICE operation

ZEV opportunity

500
450
e ZEV operation occurs at low torque
— 1400 —  where ICE operates inefficiently
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Test Vehicle

Electrification

Base Vehicle 2016 Volkswagen Jetta SEL

Test Weight 1588 kg

Engine EA888 1.8L ga_solinfe o
turbocharged direct injection
4 valves per cylinder, full-

Valvetrain authority deactivation,

operated in ganged mode

Borg-Warner 12kW

Transmission

6-speed automatic with
torque converter clutch *

Gear Ratios

4.459, 2.508, 1.556, 1.142,

MGU rated power permanent
magnet synchronous
Inverter Tula 550A power stage
A123 8Ah 48V lithium
Battery .
iron phosphate
PO Pulley
Ratio 2.137
FEA.D Litens bidirectional
Tensioner

0.851, 0.672
Final Drive Ratio |3.23
Driven Wheels Front
Tires 225/45 R17

* Torque converter clutch operated fully

locked (no slip) in gears 3+ to emulate target

vehicle application
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Projected CO2 Reduction

* With electric driving in DCCO
strategy, no need for catalyst
oxygen purge, and MGU
managed DCCO exits, CO2
reduction of 5.1% is predicted
over |14 mild-hybrid baseline

5.1%
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DCCO Transitions = Introduction

DCCO Exit Without Any Management DCCO Exit With Spark Retard

w /o spark retard

* Refiring of all cylinders at end — with spark retard ¢

* Locked torque converter
clutch introduces additional
challenges for NVH
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DCCO Exit Management — DFCO Managed

DCCO Exit Without Any Management DCCO Exit With DFCO
* Brief DFCO period at the o F WW\
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DCCO Exit and Entry — MGU Managed

DCCO Entry and Exit with MGU Torque Management

* Absorb excess torque on
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DCCO Exit and Entry — DFCO + FD Managed

* Under certain operating
conditions such as low speeds,
a ganged deactivation
mechanism may still be
capable of skip-firing

* This allows possibility of FD
managed exits, and
combination strategies
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Drive Cycle Results
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Simulation Test
14+MH eDCCO

Fuel Cut-off Time [s] 186 374
Catalyst O2 purge fuel 10 0
[% of drive cycle fuel] '
Electrical Regen Energy [MJ] | 1.37 1.51
TA Effectiveness [mg/kJ] 61 90
Electrical TA Energy [MJ] 0.63 0.63
Battery SoC Change [%] 0 +6
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Catalyst Oxygen Management

* During DCCO, no oxygen is introduced into the
exhaust aftertreatment system

* On refiring the engine, significant catalyst
management challenges are avoided
» No enriched air-fuel mixture to deoxygenate the catalyst

» Engine out CO and HC avoided, limiting reactants for NH,
production

» Also inhibits NH; production by maintaining higher catalyst
temperature by eliminating of air pumping
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WLTC CO and NOx
reduced by 50% with
respect to mild-hybrid
|4 operation

HC and CH4 reduced by
20-25%

NH3 reduced by 80%

Test vehicle achieved
strictest proposed
targets for Euro7 with
margin

Further reductions in
emissions expected
with implementation of
deac in cold start and
stop-start
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Conclusions and outlook

eDCCO can be mechanized with grouped deactivation valvetrain to minimize cost

Controls and calibration well understood

Favorable CO, and NVH results on 4-cylinder platform

Favorable toxic emissions results, and further potential exists

Estimated value proposition for 4-cyl at $35/%CO, and 3-cyl at $25/%CO, against MH
baseline

High-value target applications of 3/4-cyl, PO/P1 48V mild hybrid

» Thanks to Sam Hashemi, Menggin Shen, Masaki Nagashima, Anastasios Arvanitis, Andrew Phillips,
Kian Eisazadeh-Far, Abhishek Joshi, Amnish Singh, Tate Cooper, Babak Mazda, Chris Chandler
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