



APRIL 10-12, 2018 • COBO CENTER • DETROIT, MICHIGAN

sae.org/wcx

### mDSF: Uncompromised Engine Fuel Efficiency and Performance Via DSF and Miller Cycle Synergies

Elliott Ortiz-Soto and Matthew Younkins, Tula Technology, Inc.





#### Tula Technology's Dynamic Skip Fire (DSF)



#### Start of Production: All-New 2019 Silverado

# At the 2018 NAIAS, GM announced that the 2019MY Silverado will be equipped with "Dynamic Fuel Management"



#### "It's revolutionary; It's like nothing we've ever seen before"

--Mark Reuss, Executive Vice President, General Motors

#### Miller engines limited by efficiency-performance tradeoff



#### 2-Step Miller strategy presents opportunity for DSF



SAE INTERNATIONAL

#### mDSF: Improved efficiency and NVH via Miller cycle



Normal 4-cylinder operation



#### mDSF can be mechanized cost-effectively



#### mDSF engine dynamometer testing

| Engine                   | Audi EA888 Gen. 3B                                |
|--------------------------|---------------------------------------------------|
| Displacement             | 1984 cm <sup>3</sup> (2.0L, I4)                   |
| <b>Compression Ratio</b> | 11.7:1                                            |
| Intake Camshaft          | 2-Step Miller (AVS)<br>140° CA (Lo), 170° CA (Hi) |
| Test Fuel                | Gasoline 93 ON                                    |



#### mDSF cam strategy has minimal impact on I4 fuel consumption



SAE INTERNATIONAL

#### mDSF asymmetric lifts impact engine performance



#### mDSF shows significant fuel consumption reduction



#### mDSF vehicle fuel consumption projections

Calibrated GT-SUITE vehicle model (VW Jetta)

Steady-state engine fuel consumption maps

1588 kg TWC

6-Speed A/T + Torque Converter

Passive NVH mitigation HW

Upsized 2.1L mDSF engine

Standard certification cycles:

- US City / Highway
- WLTC Class 3
- NEDC
- JC08





#### mDSF engine operates at higher efficiency throughout drive cycle



#### mDSF improves DSF and 2-Step Miller CO<sub>2</sub> emissions



#### mDSF technology enhances DSF and Miller value



#### mDSF development continues at accelerated pace

- Tula-FEV-Delphi mDSF cylinder head
- Ch Engine controls algorithms for dynamic Hi Fire-Lo Fire-Deac
- Combustion system optimization

Demonstration vehicle by Q1 2019



#### mDSF is the next generation of DSF engine technology

 mDSF integrates DSF and Miller cycle technology with high synergy – projected to reduce CO<sub>2</sub> by 6.6-8.6% from industry benchmark Miller cycle engine

mDSF implemented cost-effectively using existing valvetrain hardware with expected industry-leading value of \$30/%

mDSF development moving forward with fully functional cylinder head, new controls algorithms and demonstration vehicle



## Thank You!

Chris Chandler, Casey Horner, Alex Perry (Tula PT Integration/Testing)

Jack Parsels, Jack Lehnert, Steve Niederer (Tula Electronics Lab)

Robert Wang, Ben Wolk, Anastasios Arvantis (Tula Simulation/NVH)

Hermes Fernandez, Keith Confer, Rich Roe (Delphi Engines/Valvetrain)

Mark Duffy, Stephen Bowyer (FEV)





APRIL 10-12, 2018 • COBO CENTER • DETROIT, MICHIGAN

sae.org/wcx

## Thank you!

Elliott Ortiz-Soto, Tula Technology